
© 2018 Arm Limited 

• Ryan Hulguin
• 4/21/2018

Debugging and 
Profiling with Arm 

Tools

ryan.hulguin@arm.com



2 © 2018 Arm Limited 

Agenda

• Introduction to Arm Tools

• Remote Client Setup

• Debugging with Arm DDT

• Other Debugging Tools

• Break

• Examples with DDT

• Lunch

• Profiling with Arm MAP

• Examples with MAP

• Obtaining Support



© 2018 Arm Limited 

Introduction to Arm HPC 
Tools



4 © 2018 Arm Limited 

Arm Forge
An interoperable toolkit for debugging and profiling

• The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs and Arm v8-A.

• State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable 

Commercially supported
by Arm



5 © 2018 Arm Limited 

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

• Build a culture of application performance & efficiency 
awareness
• Analyses data and reports the information that matters to users 
• Provides simple guidance to help improve workloads’ efficiency

• Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm



6 © 2018 Arm Limited 

Software tools-centric view

Arm Forge

ANALYZE

(Arm 
Performance 

Reports)

DEBUGGING

(Arm DDT)

PERF
OPTIMIZATION 

(Arm MAP)

Demand for software 
efficiency

Debug/optimize, edit, 
commit, build, repeat

Demand for developer 
efficiency

Version Control
(e.g. GIT, etc…)

Continuous Integration
(e.g. Jenkins, etc.)

Open Interfaces
(e.g. JSON APIs) DB

NEW 
VERSION



© 2018 Arm Limited 

Using Forge and the 
remote client



8 © 2018 Arm Limited 

Different ways to run Arm Forge…

Ultimately, that’s where the tools will run.

But what about the GUI?

There 

(interactive mode + 

reverse connect)

There

(offline OR 

interactive mode)

Here

(remote launch + 

reverse connect)



9 © 2018 Arm Limited 

Forge Remote Client

• The latest version of Forge can be downloaded from
https://developer.arm.com/products/software-
development-tools/hpc/downloads/download-arm-forge

• It is important to have the remote client version match 
what is installed on the system

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge


10 © 2018 Arm Limited 

Forge Remote Client

http://www.nersc.gov/users/software/performance-and-debugging-tools/ddt/



© 2018 Arm Limited 

Debugging with Arm DDT



12 © 2018 Arm Limited 

Print statement debugging

• The first debugger: print statements
• Each process prints a message or value at 

defined locations

• Diagnose the problem from evidence and 

intuition

• A long slow process
• Analogous to bisection root finding

• Broken at modest scale
• Too much output – too many log files

x

f(x)



13 © 2018 Arm Limited 

Typical types of bugs

• Steady and 
dependable, 
I’ll be there 
for you.

BOHR
BUG

• Oh, you are 
debugging? 
Let me hide 
for a sec!

HEISEN 
BUG

• Chaos is my 
name and 
you shall fear 
me.

MANDEL 
BUG

• I am buggy 
AND not 
buggy. How 
about that?

SCHRODIN
BUG



14 © 2018 Arm Limited 

Debugging by discipline

Debugging a problem is much easier when you can:

• Make and undo changes fearlessly

- Use a source control (CVS, …)

• Track what you’ve tried so far

- Write logbooks

• Reproduce bugs with a single command

- Create and use test script



15 © 2018 Arm Limited 

Arm DDT – the debugger

Who had a rogue behaviour ?
• Merges stacks from processes and threads

Where did it happen? 
• leaps to source

How did it happen? 
• Diagnostic messages
• Some faults evident instantly from source

Why did it happen?
• Unique “Smart Highlighting”
• Sparklines comparing data across processes

Run

with Allinea tools

Identify 
a problem

Gather info
Who, Where, How, 

Why

Fix



16 © 2018 Arm Limited 

Arm DDT cheat sheet

Load the environment module (on Cori/Edison)
• $ module load allinea-forge

Prepare the code
• $ cc -O0 -g myapp.c –o myapp.exe

Start Allinea DDT in interactive mode
• $ ddt srun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism
• On the login node:

• $ ddt &
• (or use the remote client)
• Then, edit the job script to run the following command and submit:

• ddt --connect srun -n 8 ./myapp.exe arg1 arg2



© 2018 Arm Limited 

Examples



18 © 2018 Arm Limited 

Example Files

• Once connected to cori, download the examples to your 
home directory

• cp /project/projectdirs/training/DebugProfile_201804/NERSC_Training.tar.gz ~/



© 2018 Arm Limited 

DDT Demonstration



© 2018 Arm Limited 

Exercise:

Fixing a simple crash



21 © 2018 Arm Limited 

Algorithm: C = A x B + C

Algorithm

1- Master initialises matrices A, B & C

2- Master slices the matrices A & C, sends them to slaves

3- Master and Slaves perform the multiplication

4- Slaves send their results back to Master

5- Master writes the result Matrix C in an output file

k

k

i A

B

C size

j i, j, k: loop indexes

nslices = 4



22 © 2018 Arm Limited 

Fix a simple crash in a MPI code

Objectives:

• Discover Arm DDT’s interface

• Debug a simple crash in a MPI application interactively

• Use the tool in a cluster environment

Key commands:

• Compile the application: $ make

• Clean and recompile for debugging: $ make clean && make DEBUG=1

• Use the debugger with reverse connect

• Accept the incoming connection!

• Can you find out and fix the bug?



© 2018 Arm Limited 

Exercise:

Identifying Out-of-Memory
Accesses



24 © 2018 Arm Limited 

Critical memory crash

Objectives:

• Use the memory debugging feature

• Diagnose and fix a memory problem

Key commands:

• Compile the application with debugging flags: $ make

• Recompile using the memory debugging library (statically link through Makefile LFLAGS)

• Enable memory debugging in the “Run window”

• Change the amount of checks, enable guard pages

• Can you see the memory issue can you fix it?



© 2018 Arm Limited 

Exercise:

Understanding hangs



26 © 2018 Arm Limited 

Deadlock

Objectives:

• Witness a deadlock and attach to the running processes
• Use Arm DDT Stack feature
• Use Arm DDT evaluation window

Key commands:

• Compile with: $ make
• Submit the job to run the application with 10 processes: it works.
• Run it again with 8 processes: it hangs!
• Leave the application run in the queue and attach to it with the debugger
• OR (if attaching is not supported) Submit the job again with the debugger
• Observe where it hangs. Can you fix the problem?



© 2018 Arm Limited 

Exercise:

Detecting memory leaks



28 © 2018 Arm Limited 

Memory leaks

Objectives:
• Use Arm DDT’s offline mode

• Use the memory debugging feature

• Diagnose and fix a memory leak problem

Key commands:
• Compile the application for debugging

$ make

• Edit a job script to use the debugger in offline mode with memory debugging on and submit the job

• Open the resulting *.html file

• Can you see the memory leak? 

• Restart the debugger in interactive mode. Can you see any hint from the debugger?



© 2018 Arm Limited 

Profiling with Arm MAP



30 © 2018 Arm Limited 

The complete HPC developer workflow

Commit

Profile

OptimiseBuild

Test

Debug

• System access made simple
• Work remotely or locally
• Same full capabilities

• Be confident changes work
• Re-use Scheduler reservation …
• ... Edit
• … Build
• … Test
• Commit



31 © 2018 Arm Limited 

Why profiling?

How to improve the performance of an application?

Profiling: a form of dynamic program analysis that measures, for example, the space 
(memory) or time complexity of a program, the usage of particular instructions, or the 
frequency and duration of function calls. Most commonly, profiling information serves to 
aid program optimization. 

(Wikipedia)

How?
– Select representative test case(s)
– Profile
– Analyse and find bottlenecks
– Optimise
– Profile again to check performance results and iterate



32 © 2018 Arm Limited 

How to profile?

Different methods
• Tracing

–Records and timestamps all operations
–Intrusive

• Instrumenting
–Add instructions in the source code to collect data
–Intrusive

• Sampling
–Automatically collect data
–Not intrusive



33 © 2018 Arm Limited 

Some types of profiles

Hotspot

• One function corresponds to more 80% of the runtime

• Large speed-up potential

• Best optimisation scenario

Spike

• The application spends most of the time in a few functions

• Speed-up potential depends on the aggregated time

• Variable optimisation time

Flat

• Runtime split evenly between numerous functions, each one with a very small runtime

• Little speed-up potential without algorithmic changes

• Worst optimisation scenario



34 © 2018 Arm Limited 

Arm MAP: Performance made easy

Low overhead measurement

• Accurate, non-intrusive application performance profiling

• Seamless – no recompilation or relinking required

Easy to use

• Source code viewer pinpoints bottleneck locations

• Zoom in to explore iterations, functions and loops

Deep

• Measures CPU, communication, I/O and memory to identify problem causes

• Identifies vectorization and cache performance



35 © 2018 Arm Limited 

Arm MAP cheat sheet

Load the environment module
• $ module load allinea-forge

Prepare the code
• $ cc –O3 -g myapp.c –o myapp.exe

Edit the job script to run Arm MAP in “profile” mode
• $ map --profile srun ./myapp.exe arg1 arg2

Open the results
• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
• (or load the corresponding file using the remote client connected to the remote system or locally)



36 © 2018 Arm Limited 

Typical memory hierarchy

Registers

L1 Cache

L2 Cache

L3 Cache

Main memory

Size (bytes)Latency from next 

level (cycles)
192

32k

256k

2M

2G

4

12

26

230-360

?

Example of Intel Sandy Bridge



37 © 2018 Arm Limited 

Speeding up memory accesses

High performance is possible when:
• There is an opportunity for cache re-use

• Data is local to the core for quick usage

• CPU gets data from memory to cache before it is actually needed

Registers

L1 Cache

L2 Cache

L3 Cache

Main memory

CPUs

D
A
T
A

S
T
R
E
A
M



38 © 2018 Arm Limited 

Memory access patterns

Data locality
• Temporal locality: use of data within a short time of its last use
• Spatial locality: use memory references close to memory already referenced

Temporal locality example
for (i=0 ; i < N; i++) {

for (loop=0; loop < 10; loop++) {
… = … x[i] …

}
} 

Spatial locality example
for (i=0 ; i < N*s; i+=s) {

… = … x[i] …
} 



39 © 2018 Arm Limited 

Memory Accesses and Cache Misses
• for(i=0; i<n; i++) {

• for(j=0; j<n; j++) {

• A[i*n+j]=…

• }

• }

i=0, n=4

j=0 j=1

for(i=0; i<n; i++) {

for(j=0; j<n; j++) {

A[j*n+i]=…

}

}

A

Ai=0, n=4

j=0

HIT

MISS
j=1



© 2018 Arm Limited 

Exercise:

Optimizing memory 
accesses



41 © 2018 Arm Limited 

Resolve high memory accesses issues

Objectives:

• Discover Arm MAP’s interface

• Profile the MPI matrix multiplication example and find out the performance issue

• Use the tool in a cluster environment

Key commands:

• Compile the application

$ make

• $ map --profile srun myApp.exe

• Open the result in the GUI on the login node once the job has completed

$ map *.map

• What is the bottleneck of the application? Can you identify performance problems?



© 2018 Arm Limited 

Resolving workload 
imbalances



43 © 2018 Arm Limited 



44 © 2018 Arm Limited 

Load balancing in theory

Balancing the workload is critical because:
– Processors may be idle for an extended period of time

– They could have been doing some work instead of burning energy

Examples of load balancing
• Owner computes

Balance done through data distribution

• Independent tasks

Balance done through prediction/statistics

• A mix of various components

Balance between scalar workload and communications (for instance)



45 © 2018 Arm Limited 

Redistributing the workload

Several techniques exist to balance the workload
• “Simple” redistribution of data
• Dynamic balancing using space filling curves

Example
Step 1: Adaptive Refinement of a domain in subsequent levels



46 © 2018 Arm Limited 

Redistributing the workload

Example
Step 2: Load distribution of an adaptively refined domain

Step 3: Space Filling Curve for the load balanced tree



47 © 2018 Arm Limited 

Load balancing can be counter intuitive

Corollary: 

There is an asymmetry between processors having too much work and 
having not enough work. It is better to have one processor that finishes a 
task early than having one that is overloaded so that all others wait for it.

When it comes to load balancing, the 
“costliest” function shown by the profiler is 

not the bottleneck. 
The bottleneck is the “cheapest” one.

Workload imbalance webinar video 

https://youtu.be/MScwYTNGOp0

https://youtu.be/MScwYTNGOp0


© 2018 Arm Limited 

Exercise:

Improving IOs 



49 © 2018 Arm Limited 

Detect workload imbalance and optimise IO

Objectives:

• Exhibit the workload imbalance in the code (on 1 or 2 nodes)

• Make suggestions to fix the problem

Key commands:

• Compile the application

$ make

• $ map --profile srun -n 8 ./myApp.exe

• Open the profiling results in the GUI on the login node once the job has completed

$ map *.map

• How can you fix the imbalance problem?



© 2018 Arm Limited 

Maximizing application 
efficiency with 
Performance Reports



51 © 2018 Arm Limited 

Arm Performance Reports benefits

Arm Performance 
Reports

Benefits

Analytics

Energy

Processor

Storage
Networks

Reduced run 
time

Higher 
throughput

Constraints



52 © 2018 Arm Limited 

“Learn” with Arm Performance Reports

Very simple start-up

No source code needed

Fully scalable, very low overhead

Rich set of metrics

Powerful data analysis



53 © 2018 Arm Limited 

Metrics overview

Multi-threaded 
parallelism

SIMD
parallelism

Load
imbalance

OMP 
efficiency

System 
usage



54 © 2018 Arm Limited 

Arm Performance Reports cheat sheet

Load the environment module

• $ module load allinea-reports

Edit the job script to prefix the mpirun command

• perf-report srun -n 8 ./myapp.exe

Analyse the results

• $ cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

• $ firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html



© 2018 Arm Limited 

Exercise:

Maximizing scientific 
output



56 © 2018 Arm Limited 

Maximise efficiency

Objectives:

• Generate a performance report of a simple code

• Find the best parameters to maximize the application efficiency

– Compilation flags

– Number of processes

– Number of nodes

Key commands:

• Compile:

$ make

• $ perf-report srun -n 8 ./myapp.exe



© 2018 Arm Limited 

User Guide



58 © 2018 Arm Limited 

Forge User Guide

• Online documentation is always available at
https://developer.arm.com/products/software-
development-tools/hpc/documentation

• Direct link to DDT User Guide
https://developer.arm.com/docs/101136/latest/ddt

• Local user guide is available in your Forge installation
/path/to/arm/forge/doc/userguide-forge.pdf

https://developer.arm.com/products/software-development-tools/hpc/documentation
https://developer.arm.com/docs/101136/latest/ddt


© 2018 Arm Limited 

Obtaining Support



60 © 2018 Arm Limited 

Obtaining Support

• For simple queries, use the web form at
https://www.arm.com/products/development-tools/hpc-
tools/contact-support

• For more advanced issues, email support-hpc-sw@arm.com
This allows you attach screenshots, source code, and debug log 
files

https://www.arm.com/products/development-tools/hpc-tools/contact-support
mailto:support-hpc-sw@arm.com


© 2018 Arm Limited 

Debug Log Files



62 © 2018 Arm Limited 

Debug Log Files

• In the event that DDT crashes or does not work like expected, a 
debug log file will be helpful to the arm support team

• Debug log files can be generated by passing arguments to DDT

• For Example:

ddt --debug --log=crash.log aprun -n 16 ./myProgram.exe



© 2018 Arm Limited 

Q&A



6464

Thank You
Danke
Merci
谢谢
ありがとう
Gracias
Kiitos
감사합니다
धन्यवाद
תודה

© 2018 Arm Limited 


